1 0 Se p 20 07 Hurwitz numbers , matrix models and enumerative geometry

نویسنده

  • Marcos Mariño
چکیده

We propose a new, conjectural recursion solution for Hurwitz numbers at all genera. This conjecture is based on recent progress in solving type B topological string theory on the mirrors of toric Calabi–Yau manifolds, which we briefly review to provide some background for our conjecture. We show in particular how this B-model solution, combined with mirror symmetry for the one-leg, framed topological vertex, leads to a recursion relation for Hodge integrals with three Hodge class insertions. Our conjecture in Hurwitz theory follows from this recursion for the framed vertex in the limit of infinite framing.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 70 9 . 14 58 v 2 [ m at h . A G ] 8 J un 2 00 8 Hurwitz numbers , matrix models and enumerative geometry

We propose a new, conjectural recursion solution for Hurwitz numbers at all genera. This conjecture is based on recent progress in solving type B topological string theory on the mirrors of toric Calabi–Yau manifolds, which we briefly review to provide some background for our conjecture. We show in particular how this B-model solution, combined with mirror symmetry for the one-leg, framed topol...

متن کامل

Topological String Theory and Enumerative Geometry

In this thesis we investigate several problems which have their roots in both topological string theory and enumerative geometry. In the former case, underlying theories are topological field theories, whereas the latter case is concerned with intersection theories on moduli spaces. A permeating theme in this thesis is to examine the close interplay between these two complementary fields of stu...

متن کامل

The Enumerative Geometry of Rational and Elliptic Curves in Projective Space

We study the geometry of moduli spaces of genus 0 and 1 curves in P with specified contact with a hyperplane H. We compute intersection numbers on these spaces that correspond to the number of degree d curves incident to various general linear spaces, and tangent to H with various multiplicities along various general linear subspaces of H. (The numbers of classical interest, the numbers of curv...

متن کامل

Towards the Geometry of Double Hurwitz Numbers

Double Hurwitz numbers count branched covers of CP with fixed branch points, with simple branching required over all but two points 0 and∞, and the branching over 0 and∞ points specified by partitions of the degree (withm and n parts respectively). Single Hurwitz numbers (or more usually, Hurwitz numbers) have a rich structure, explored by many authors in fields as diverse as algebraic geometry...

متن کامل

Geometry of Meromorphic Functions and Intersections on Moduli Spaces of Curves

In this paper we study relations between intersection numbers on moduli spaces of curves and Hurwitz numbers. First, we prove two formulas expressing Hurwitz numbers of (generalized) polynomials via intersections on moduli spaces of curves. Then we show, how intersection numbers can be expressed via Hurwitz numbers. And then we obtain an algorithm expressing intersection numbers 〈τn,m ∏r−1 i=1 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008